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SYNTHESIS OF REFLECTING POLARIZERS AS A GRID
OF PARALLEL STRIP CONDUCTORS PLUS
A PLANE MIRROR

M. M. WAINBRAND, S. V. YERMOLAYEV, B. E. KINBER, O. R. RACHKO and
M. Yu. CHERVENKO

Abstract—The paper considers the problem of synthesis of reflecting polarizers that transform the
polarization of an incident field in a desired manner. The reflecting polarizers are designed as a grid of
parallel strip conductors set above a plane mirror. How to evaluate the orientation of the conductors and
the dimensions of polarizer elements is described. The results are discussed of the synthesis of reflecting
polarizers transforming a linearly polarized wave into a wave with circular polarization. The stability of
such polarizers to perturbations of the initial wavelength is investigated.

Evaluating the anisotropy parameters of a curvilinear mirror designed to transform the polarization
of an incident wave in a desired manner has been approached by Kinber and co-workers [1, 2].
At each point of the mirror surface the anisotropy has been described by the second-order impedance
tensor (or reflection matrix) allowing for a transformation of the two orthogonal components of
polarization. The coefficients of the tensor at each point of the mirror have been determined by
calculating for a plane incident wave the required transformation of polarization at the anisotropic
plane. This approach has determined the direction of anisotropy lines for the mirror and the
impedance in the two orthogonal directions.

This paper is devoted to designing anisotropic reflecting planes with a specified impedance. A
reflecting polarizer with a given impedance may be constituted by a multilayered grid and a reflecting
surface of corrugated or smooth profile [3, 4]. A simple design of plane polarizer is a periodic grid
of parallel conductors placed above a plane mirror. The subsequent discussion will be focused on
the creation of such polarizers.

It is assumed that the conductors constituting the grid are flat metal bands that may be placed
parallel to the mirror (plane grating) or perpendicular to the mirror (knife or edge grating). The
period of a grating may involve one or two conductors of different size. For a given angle of
incidence, and given polarizations of the incident and reflected waves, the synthesis problem, i.e.
to evaluate the direction of conductors in the grating and the size of polarizer elements, is solved
by a numerical minimization of a performance criterion (outlined in Section 3) which measures
the difference between the desired and resultant polarization of the reflected wave.

The number of parameters used in the minimization depends on the specific type of polarizer.
For a single-element plane grating, three parameters have to be determined: grating period p, band
width w and polarizer depth d (Fig. 1a) subject to the constraint w < p. In the case of a two-element
plane grating, there are five parameters: period p, first band width w,, second band width w,, front
edge to front edge spacing w, and depth d (Fig. 1b), subject to the constraints w, <ws, and
w3+ w, <p.

For a one-element knife grating, three parameters are to be determined: period p, strip height
h and depth d (Fig. 1c) subject to the constraint h < d. For the case of a two-element knife grating,
there are six parameters: period p, depth d, first strip height 4,, second strip height h,, and horizontal
and vertical edge spacings h, and w (Fig. 1d) subject to the constraints w < p, h; <d, h; >0, and
hy + h, < d. In special cases in which the grating lies on the reflecting plane, the parameters to be
determined are period p and depth d for a single-element grating (Fig. le), and period p, depth d
and spacings w and h (Fig. 1f) subject to the constraints w<p, h<d and h=>0. In all these
situations, in addition to the parameters mentioned, the orientation of the grids must be determined.

METHODS OF ANALYSIS OF REFLECTING POLARIZERS

To solve the synthesis problem one needs to compute and minimize the performance criterion.
This cannot be done without calculating the field reflected by the polarizer. We therefore begin
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Fig. 1. Reflecting polarizer structures.

with the problem of analysis of the polarizers, which may be tackled by way of analysis of
multilayered periodic gratings composed of strip conductors. (The polarizers under discussion
represent a particular case of such a structure, because one of the gratings can be composed of
horizontal strips equal in width to the grating period.)

One of the methods used for analysing such structures is the Riemann—Hilbert method that
reduces the initial problem to solution of a reduced system of linear algebraical equations [5, 6].
However, the efficiency of this method falls sharply when applied to multilayered and multi-element
gratings (in our case this is a two-layered grating; the first layer period contains one or two elements
while that of the second layer equals the width of a horizontal strip). This limitation prevents the
Riemann—Hilbert method from being used in the synthesis problem.

Galishnikova and Ilinsky [7] reduce the analysis of electromagnetic waves on a periodic structure
to Fredholm’s equation of the first kind which allows a numerical solution by means of
self-regularization. However, a direct application of this method is unsuitable for diffraction analysis
on a grating composed of parallel strips because the series defining the matrix elements of the
associated system of linear equations converge slowly and entail large consumption of computer
time.

In what follows we also compute the field reflected by the polarizer by reducing the problem to
numerical solution of the integro-differential equation (H-polarization) and Fredholm’s integral
equation of the first kind (E-polarization) [8]. However, unlike Balishnikova and Ilinsky [7] we
invoked Kummer’s transformation and achicved a sizeable improvement in convergence of the
series (to the same precision the matrix elements were computed 25 times faster). In addition we
took into account that the matrix of the system is Toeplitz and used the respective inversion
algorithms; this resulted in substantial savings of computer time and allowed higher orders of
approximation.

SELECTION OF A PERFORMANCE MEASURE FOR THE SYNTHESIS PROBLEM

In the synthesis of a reflecting polarizer, the performance measure should take into account the
amplitude and phase differences between the orthogonal components of the desired and actually
obtained polarization of the reflected wave. For example, it may be in the form

2
= Z (A — A) + (@ — 9)*, 1)

i=1

where 4;, @; (i =1, 2) are the amplitudes and phases of the desired polarization vector, and A4;, ¢;
the actual components of reflected wave depending on the structure of the polarizer.
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For the particular type of polarizer under investigation (with a grating of parallel conductors)
the form of expression (1) and its minimization procedure can be appreciably simplified. The
minimization of Eq. (1) simplifies since the desired parameters—the angle between the plane of
reflection and the direction of the conductors and the dimensions of polarizer elements—can be
determined separately, first the orientation of the conductors, then the elements of the polarizer.

The direction of grid conductors coincides with the direction of the anisotropy line. The latter
can be determined algebraically by the given angle of incidence of the initial wave and the
polarization vectors referring to the initial and reflected waves [1, 2]. The anisotropy line is chosen
to be parallel to one of unit vectors of the antidiagonal representation basis of the impedance
tensor.t When the orientation of the grid conductors is known, the form of Eq. (1) is amenable
to simplification. For this purpose the polarization vectors of the incident and reflected waves
should be decomposed into components one of which lies in the plane orthogonal to the conductors,
the other being oriented along the vector product of the first component and the wave propagation
vector.

In solving the problem of diffraction by a cylinder of an arbitrarily incident plane wave, the
above decomposition corresponds to the cases of H-polarization (component of the polarization
vector is in the plane perpendicular to the conductors) and E-polarization. The E and H components
of a given polarization of the reflected wave are related to the respective components of the initial
wave by the reflection matrix based on unit vectors oriented along the grid conductors and at right
angles to them. Notice that on this basis the impedance tensor is antidiagonal, hence the reflection
matrix will be diagonal [9]. Also, the reflection occurs without losses, therefore the moduli of
diagonal elements are all unity. This implies that when the orientation of the grid is found the E
and H components of the given polarization of the incident and reflected waves are equal in absolute
value for any feasible dimensions of polarizer elements.} Thus, for the problem of synthesis, it will
suffice to select such dimensions that the phases of the E and H components of the reflected wave
coincide with the desired values or, what is the same, to minimize the function

Iy =(@ou— Psu— O20)" + (P25 — P15 — 025)° ()
where @4, @15, P,n and @,y are the given phases of the E and H components of polarization of
the incident and reflected waves, and ¢,y, @, are the phases of the respective components of the
actually reflected wave. The last quantities may be determined by solving the problem of diffraction
of a plane wave incident on the polarizer (periodic structure of parallel conductors) in an arbitrary
fashion. Because the solution of this problem is related to the diffraction of an obliquely incident
plane wave (plane of reflection is orthogonal to the grid conductors), see, e.g. [10], we evaluate
0,5 and @, by solving the last problem numerically. This is achieved with the aid of the standard
computer codes developed on the basis of [8]. The minimization of (2) is carried out by the deformed
polyhedral technique [11] which does not require that the partial derivatives of I, should be
computed and therefore does not introduce additional errors due to numerical differentiation.

In the synthesis of reflecting polarizers that must retain their properties in a certain range of
wavelengths, the minimization should be carried out not for the function (2), but rather for the
functional

A+A2
I, = f (P2 — Pru— Q2u)* + (Pap — §1p — 025)°1d4, 3)
A=A

where A is the operating wavelength and A/ is an increment specifying the bandwidth.

RESULTS OF CALCULATIONS

We apply the procedure outlined above to the creation of reflecting polarizers that transform a

+ It is worth noting that for polarizers with more complicated gratings, such as multilayered with arbitrarily oriented
conductors, rectangular cell arrangements and nonparallel conductors, the anisotropy lines do not coincide with the system
orientation.

1 In this work the period of the structure is assumed so small that only the fundamental harmonic is reflected. A more
general case may be considered with a few harmonics being propagated by imposing constraints on the moduli of harmonics
other than the fundamental.
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Fig. 2. Relative dimensions of computer-synthesized polarizer elements as functions of incidence angle.
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Fig. 3. Objective function I, versus wavelength.

linearly polarized wave into a wave with circular polarization. Assume that the electric field strength
vector of the incident wave makes an angle of 45° with the plane of reflection. It is not hard to
verify that for the given polarizations the direction of the grid conductors will be perpendicular to
the plane of reflection. We seek to determine the dimensions of elements of the polarizers containing
a single-element plane or knife grating (see Fig. 1a,e) by minimizing the function I, given by (2).
Let the band thickness be 0.034, (4, = operating wavelength), ¢,y =@, =0, §,4 = 371/2 — /24
(—7/2 +m/24), and @,z =7 —n/24. (The phase $,r =7 corresponds to the reflection of the E
component of the field from a smooth mirror and may be hard to attain for semitransparent
structures. Therefore the phases of both components of the polarization of the reflected field are
given with a retardation of /24.) The results of these calculations are plotted in Figs 2-4.

Figure 2 shows the dimensions p/4,, d/4, and w/A, of the elements of polarizers as functions of
angle of incidence (deg.), for the polarizer with a plane grid at (a) and for the edge grid structure
at (b). As the angle of incidence d increases, the period p/4, and the band width w/4, of the plane
grating decreases, whereas the depth of the polarizer d/A, increases. The parameters of the edge
grid polarizer vary more slowly than the plane grid counterpart in the same range of angles a. At
higher values of « the period p/4, of the edge grating increases and the depth of the polarizer
decreases. Comparison of the diagrams at (a) and (b) reveals that at angles of incidence close to
45° the edge grid polarizer offers a more compact structure because of its smaller depth, d/4,.

At small angles a the advantage of smaller size goes to the plane grating structure. However,
Fig. 2(b) indicates that at a € [0°, 20°] the parameters of the edge grid structure remain practically
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Fig. 4. Sensitivity of the phase @,y of the field reflected from computer-synthesized polarizers (a, plane
grating; b, edge grating) to variations of the operating wavelength.
constant, that is, the performance of this polarizer in this range is independent of the angle of
incidence.

The degree of stability of synthesized polarizers with respect to variations of wavelength may be
characterized by values of the performance criterion I,. Figure 3 shows I, as a function of wavelength
for +10% detuning from the operating wavelength and four angles of incidence, a = 0°, 15°, 30°
and 45°. The diagram at (a) relates to the polarizer with a plane grating and the diagram at (b)
to the polarizer with an edge grating. The curves for « =0° and 30° not shown in (b) must lie
between the extreme curves for « =0° and 45°. The function I,(4/4,) increases more slowly for
increasing wavelengths than for decreasing, and for larger angles « than for smaller. Comparison
of the plots in Fig. 3(a,b) indicates that the edge grating polarizer possesses a higher degree of
stability with respect to detuning in a wide range of incidence angle «.

To select a design of a polarizer with higher stability the designer should evaluate the contribution
of each phase ¢,z and ¢,y to I,. Calculations indicate that for the computer-synthesized polarizers
with plane and edge gratings, in the ranges of «e[0°, 45°] and A/1,€[0.9, 1.1], the values of ¢,
lie in the interval [2.99, 3.02] (with the desired value 3.01). In other words, the variation of I, is
almost completely controlled by the variation of ¢,5. Figure 4 shows that the interval of variation
of @,y is smaller, i.e. the stability margin is higher, for the edge-grating polarizer at (b) than for
the plane grating counterpart at (a).

The plots in Fig. 2 suggest that the problem at hand has a unique solution. However, these
polarizer designs are particular cases of more complicated versions (see Fig. 1b,c.d.f), so that a
similar synthesis problem for the latter may have indefinitely many solutions. Additional elements
of polarizers affect ¢, only insignificantly, and hence the solution of the synthesis problem by
minimizing I, given by (3) subject to the given polarizations of the incident and reflected waves
would not result in a sharp increase of stability margin of the reflecting polarizers.
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